# Keysight Technologies RF PA/FEM Characterization & Test, Reference Solution Solution Brochure



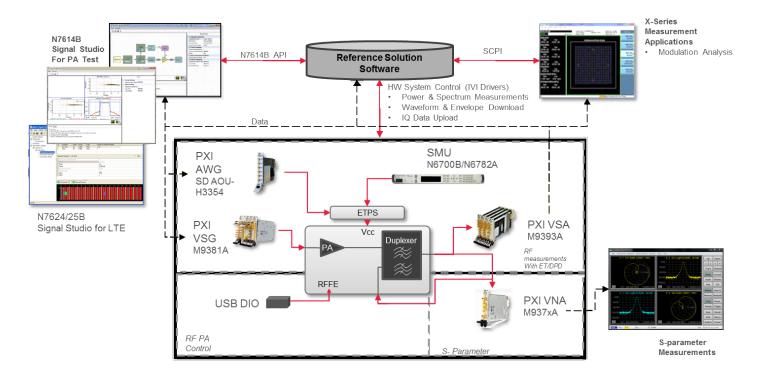
The RF power amplifier characterization and test, Reference Solution provides high throughput, measurement quality, and performance for design validation and production test of next generation power amplifiers/front end modules supporting cellular and wireless connectivity format.

# Next generation RF power amplifier (PA) characterization and test challenges

Wireless mobile device manufacturers continue to look for ways to drive down cost while improving performance of their devices. To support this trend, power amplifier duplex (PAD) devices are an increasingly popular alternative to the more traditional PA architecture. These smaller, highly integrated devices allow designers to optimize space by replacing multiple, discrete components with a single, compact module while lowering power consumption and increasing performance.

With device complexity and performance requirements increasing, the amount and type of testing continues to grow while price pressures simultaneously drive the need for higher throughput.

Testing next generation RF PAs brings new challenges:


- Passive components integrated onto PAD-type devices must be tested in addition to the PA
- Envelope tracking and digital pre-distortion to overcome efficiency issues caused by high peak-to-average ratio modulation formats
- Higher number of bands and modulation formats requiring additional test conditions

## RF power amplifier/FEM characterization and test, Reference Solution

RF PA/FEM characterization and test, Reference Solution enables rapid, full characterization of next-generation power amplifier modules such as PAD devices, including S-parameter, demodulation, power, adjacent channel power and harmonic distortion measurements. Digital pre-distortion and envelope tracking signal generation and analysis are enabled by Keysight's N7614B Signal Studio for Power Amplifier Test software. The Reference Solution control software enables tight synchronization between the signal source and the arbitrary waveform generator (AWG), resulting in optimal alignment between input signal and envelope. This multi-vendor solution also includes a Signadyne single slot, high speed PXI AWG, which supports fast envelope tracking capability, while maintaining a small test footprint.

To facilitate evaluation and integration into your test environment, you can use supplied test code examples that have been designed to optimize test throughput without compromising performance.

# Reference Solution Architecture



#### Hardware

#### **Solution Features & Benefits**

| Feature                                                                    | Benefit                                                                                 |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Integration with N7614B Signal Studio for PA Test                          | Automated DPD & ET for fast design and characterization                                 |
| High performance VSA                                                       | Wide dynamic range and frequency coverage for harmonic distortion                       |
| Real-time signal processing                                                | Fast measurements                                                                       |
| Adjustable RF signal/ envelope skew to ± 1 ps resolution over 250 ns range | Tight synchronization between RF signal and envelope                                    |
| X-series measurement applications for modular instrument                   | Measurement correlation to bench top instruments                                        |
| Add multiple independent full 2-port VNAs                                  | Reduces COT by simultaneously characterizing many devices                               |
| True multiport VNA with N-port correction capability                       | No degradation in performance (i.e. dynamic range, trace noise, directivity, stability) |
| Solution measurement speed                                                 |                                                                                         |
| EVM measurement speed                                                      | < 50 ms, nominal for LTE 10 MHz BW                                                      |
| ACPR measurement speed                                                     | 0 ms, after a power servo loop                                                          |
| Servo loop time                                                            | < 3 ms, nominal                                                                         |
| Tuning speed                                                               | 150 us, nominal                                                                         |
| Full 2-port S-parameter measurement speed                                  | 28-33 msec across 401 points                                                            |
| Complete DPD loop                                                          | < 1 second                                                                              |

#### **Product Specifications & Characteristics**

| •                                         |                                        |
|-------------------------------------------|----------------------------------------|
| M9381A PXIe Vector Signal Generator       |                                        |
| Frequency range                           | 1 MHz to 3, 6 GHz                      |
| Analysis bandwidth                        | 160 MHz                                |
| Absolute amplitude accuracy               | ± 0.4 dB                               |
| M9391A PXIe Vector Signal Analyzer        |                                        |
| Frequency range                           | 1 MHz to 3, 6 GHz                      |
| Analysis bandwidth                        | 160 MHz                                |
| Absolute amplitude accuracy               | ± 0.45 dB, typical                     |
| M9393A PXIe Performance Vector Signal Ana | lyzer                                  |
| Frequency range                           | 9 kHz to 8.4, 14, 18, 27 GHz           |
| Analysis bandwidth                        | 160 MHz                                |
| Absolute amplitude accuracy               | ± 0.15 dB, nominal                     |
| SD AOU-H3353 PXIe Arbitrary Waveform Gen  | erator                                 |
| Real-time bandwidth                       | 200 MHz                                |
| Maximum sample rate                       | 500 MSPS per channel                   |
| M937xA PXIe Vector Network Analyzer       |                                        |
| Frequency range                           | 300 kHz to 4, 6.5, 9, 14, 20, 26.5 GHz |
| Dynamic range                             | ≥ 116 dB (9 GHz), > 98 dB (20 GHz)     |
| Trace noise                               | < 0.001 dB                             |
| N6700B Mainframe & N6782A SMU             |                                        |
| Measurement accuracy:                     |                                        |
| Current, 100 mA range                     | 0.025% + 10 uA                         |
| Current, 10 uA range                      | 0.025% + 8 nA                          |
| Voltage, 20 V range                       | 0.025% + 1.2 mV                        |
|                                           |                                        |

# Hardware – Instruments

# M9381A PXIe Vector Signal Generator

#### www.keysight.com/find/m9381a

Designed for fast data interfaces and high-speed automated test systems, the M9381A generates RF signals up to 6 GHz with 160 MHz bandwidth. The M9381A is compatible with the full range of Signal Studio communications applications. A typical M9381A configuration includes 4 individual PXIe modules - M9311A digital vector modulator, M9310A source output, M9301A synthesizer and M9300A frequency reference (may be shared with other signal generators and analyzers in the same chassis).

# M9391A PXIe Vector Signal Analyzer

#### www.keysight.com/find/m9391a

Designed for fast power and demodulation measurements in high-speed automated test systems, the M9391A analyzes signals up to 6 GHz with 160 MHz bandwidth. Perform power measurements quickly with real-time signal processing and analyze harmonic distortion up to 6 GHz. The M9391A is compatible with the full range of X-Series Measurement Applications for signal analysis. A typical M9391A configuration includes 4 individual PXIe modules – M9301A synthesizer, M9214A digitizer, M9350A downconverter and the M9300A frequency reference (may be shared with other signal generators and analyzers in the same chassis).

# M9393A PXIe Performance Vector Signal Analyzer

#### www.keysight.com/find/m9393a

Designed for fast power and demodulation measurements in high-speed automated test systems, the M9393A analyzes signals up to 27 GHz with 160 MHz bandwidth. Perform power measurements quickly with real-time signal processing and analyze harmonic distortion up to 27 GHz. The M9393A is compatible with the full range of X-Series Measurement Applications for signal analysis. A typical M9393A configuration includes 4 individual PXIe modules – M9308A synthesizer, M9214A digitizer, M9365A downconverter and the M9300A frequency reference (may be shared with other signal generators and analyzers in the same chassis).









#### N6700B Mainframe and N6782A SMU

#### www.keysight.com/find/m6700b

Designed for glitch-free operation the N6700B with N6782A ensures safe usage with the DUT during output and measurement range changes, even with capacitances of up to 150 uF. The N6700B is a 1U high modular power mainframe that accepts the N6782A module, a source/measure unit (SMU) designed for precision sourcing and measurement.

#### Signadyne SD AOU-H3353 PXIe Arbitrary Waveform Generator

www.signadyne.com/en/products/hardware/high-speed/analog-out--awgs--signalgenerators/sd-aou-h3353--analog-out--awg--signal-generator

Designed for high-speed waveform generation, the single-slot SD AOU-H3353 enables fast envelope generation for use in high-speed automated test applications. Combine with the M9381A PXIe Vector Signal Generator for synchronized RF and envelope signals. Adjust synchronization at 1 ps resolution.

#### M937XA PXIe Vector Network Analyzer

#### www.keysight.com/find/pxivna

Designed for fast S-parameter measurements in high-speed automated test systems, the M937XA series analyzes signals up to 26.5 GHz. This single-slot, full 2-port VNA enables multiport/multi-site capability in a very small package. Easily add or subtract VNA modules based on the needs of your test station. The full N-port correction capability allows for complete and accurate characterization of multiport devices.





# Software

Common application software, usable with both modular and benchtop instruments, provides users with the same measurement routines, user interfaces and programming models on both benchtop and modular solutions. The RF PA/FEM Characterization & Test, Reference Solution includes measurement applications that can be used with benchtop and modular instruments: Signal Studio for signal creation, X-Series measurement applications for demodulation and PNA-X-based software for S-parameter measurements

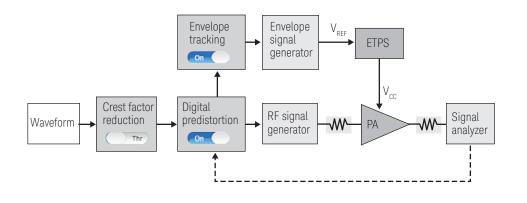
## Software - Signal creation

The RF PA/FEM characterization and test, Reference Solution enables multiple ways to create the RF signal. A range of standard waveforms generated with the Keysight Signal Studio software applications are included for demonstration. The Reference Solution software and the M9381A PXIe VSG programming interface support importing customer supplied waveforms, as well.

# Signal Studio

Keysight Signal Studio software is a flexible test suite of signal-creation and measurement tools that will reduce the time you spend on signal simulation.

Signal Studio's basic capabilities use waveform playback mode to create and customize waveform files needed to test components and transmitters.


With the N7614B power amplifier test software, Signal Studio's performance-optimized test flow – validated by Keysight – enhances the characterization and verification of your devices.

Modern mobile communications, such as LTE and 802.11ac demand higher data throughput, up to Gb/s, and use wider bandwidth, multi-input multi-output (MIMO) space-time coding, and higher order orthogonal frequency division multiplexing (OFDM) modulation formats. These requirements place new demands on linearity, bandwidth and power consumption in wireless components and place unprecedented battery requirements on mobile terminals or base stations.

Crest factor reduction, envelope tracking and digital pre-distortion, the three main PA test methods that have been introduced, are undergoing research aimed at achieving these goals. All of these methods are supported by the N7614B Signal Studio for power amplifier test software.

# Custom waveforms

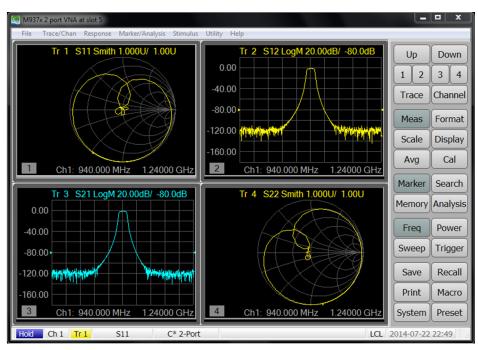
Custom waveforms and envelopes can also be imported into this Reference Solution.



Signal Studio's ET and DPD test flow allows the envelope calculation to be performed using a non-pre-distorted signal, a pre-distorted DPD signal, or an user-specified envelope waveform

# Software – Signal analysis

# X-Series measurements applications for modular instruments


The X-Series measurement applications for modular instruments transform PXI vector signal analyzers into standards-based RF transmitter testers. Fast RF conformance measurements help you evaluate and manufacture your devices and equipment.

| X RF                                                                                                         | 50 Ω AC                                                                                                                  |                                                                                                                             | CENCE-I                                                                                | NT SOURCE OFF ALIGN AUTO                                                                                                                                                                                                                                                  | 06:15:05 PM Jul 12, 2012                                                                                                                                                                       |                                                     |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Laver0 OFDM Meas                                                                                             |                                                                                                                          |                                                                                                                             |                                                                                        | r0 Detected Allocations Time                                                                                                                                                                                                                                              | · · · ·                                                                                                                                                                                        | Measurements                                        |
| 250 m/div Ref0                                                                                               |                                                                                                                          |                                                                                                                             | · · · · ·                                                                              | arriers/div                                                                                                                                                                                                                                                               |                                                                                                                                                                                                | Transmit On/Of                                      |
| I-Q 1 O                                                                                                      | • • • •                                                                                                                  | 0 0 0                                                                                                                       | Re<br>14                                                                               |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                | Powe                                                |
| 750m ©                                                                                                       |                                                                                                                          |                                                                                                                             | 10                                                                                     |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                | 1 Olic                                              |
| 500m 💿                                                                                                       |                                                                                                                          |                                                                                                                             | 7                                                                                      |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                     |
| 250m                                                                                                         |                                                                                                                          | • • •                                                                                                                       | 3                                                                                      |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                | Modulation                                          |
| 0                                                                                                            |                                                                                                                          | 0 0 0                                                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                | Analysis                                            |
| -250m 🔍                                                                                                      |                                                                                                                          | · · ·                                                                                                                       | -3                                                                                     |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                     |
| -500m O                                                                                                      | · · · · ·                                                                                                                | • • •                                                                                                                       | -10                                                                                    |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                | Monito                                              |
| .1                                                                                                           |                                                                                                                          |                                                                                                                             | -14                                                                                    |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                | Spectrun                                            |
| -1.893                                                                                                       | 0 0 0 0                                                                                                                  | 0 0 0                                                                                                                       | 1.893 Start                                                                            | :0 sym                                                                                                                                                                                                                                                                    | Stop 119 sym                                                                                                                                                                                   |                                                     |
| -1.035                                                                                                       |                                                                                                                          |                                                                                                                             |                                                                                        |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                     |
|                                                                                                              |                                                                                                                          |                                                                                                                             | 1.000                                                                                  | o sym                                                                                                                                                                                                                                                                     | Stop 115 Sym                                                                                                                                                                                   |                                                     |
| Ch1 Frame Summer                                                                                             |                                                                                                                          |                                                                                                                             |                                                                                        | -                                                                                                                                                                                                                                                                         | Stop 119 Sym                                                                                                                                                                                   | IQWaveform                                          |
|                                                                                                              |                                                                                                                          |                                                                                                                             |                                                                                        | Ch1 Error Summary                                                                                                                                                                                                                                                         | ^                                                                                                                                                                                              | IQ Waveforn                                         |
| Ch1 Frame Summar<br>Channel                                                                                  | y<br>EVM(%rms)                                                                                                           | Power(dB)                                                                                                                   | Mod.Fmt.                                                                               | -                                                                                                                                                                                                                                                                         | = 538.67 m%rm<br>= 1.8357 %                                                                                                                                                                    |                                                     |
| Channel<br>P-SS                                                                                              | EVM(%rms)                                                                                                                |                                                                                                                             | Mod.Fmt.                                                                               | Ch1 Error Summary<br>EVM<br>EVM Pk<br>Data EVM                                                                                                                                                                                                                            | = 538.67 m%rm<br>= 1.8357 %<br>= 523.36 m%rm                                                                                                                                                   | Conformance                                         |
| Channel                                                                                                      | EVM(%rms)                                                                                                                |                                                                                                                             | Mod.Fmt.                                                                               | Ch1 Error Summary<br>EVM<br>EVM Pk                                                                                                                                                                                                                                        | ←<br>= 538.67 m%rm<br>= 1.8357 %<br>= 523.36 m%rm<br>M =                                                                                                                                       | Conformanc                                          |
| Channel<br>P-SS<br>S-SS                                                                                      | EVM(%rms)<br>0.50754<br>0.46512                                                                                          | -0.00278<br>-0.00338<br>-0.02434<br>0.01889                                                                                 | Mod.Fmt.                                                                               | Ch1 Error Summary<br>EVM<br>EVM Pk<br>Data EVM<br>- 3GPP-defined QPSK EV<br>- 3GPP-defined 16QAM E <sup>1</sup>                                                                                                                                                           | = 538.67 m%rm<br>= 1.8357 %<br>= 523.36 m%rm<br>M =<br>VM =<br>VM =                                                                                                                            | Conformance                                         |
| Channel<br>P-SS<br>S-SS<br>PBCH                                                                              | EVM(%rms)<br>0.50754<br>0.46512<br>0.48015                                                                               | -0.00278<br>-0.00338<br>-0.02434                                                                                            | Mod.Fmt.<br>Z-Chu<br>BPSK<br>QPSK                                                      | Ch1 Error Summary<br>EVM<br>EVM Pk<br>3GPP-defined QPSK EV<br>3GPP-defined 10QAM E'<br>3GPP-defined 64QAM E'<br>RS EVM                                                                                                                                                    | = 538.67 m%rm<br>= 1.8357 %<br>= 523.36 m%rm<br>M =<br>VM =                                                                                                                                    | Conformance                                         |
| Channel<br>P-SS<br>S-SS<br>PBCH<br>PCFICH<br>PHICH<br>PDCCH<br>RS                                            | EVM(%rms)<br>0.50754<br>0.46512<br>0.48015<br>0.55953<br>0.53597<br>0.53065<br>0.46375                                   | -0.00278<br>-0.00338<br>-0.02434<br>0.01889<br>0.02182<br>-0.00431<br>0.00171                                               | Mod.Fmt.<br>Z-Chu<br>BPSK<br>QPSK<br>QPSK<br>BPSK(CD <sup>-1</sup><br>QPSK<br>QPSK     | Ch1 Error Summary<br>EVM<br>EVM Fk<br>Data EVM<br>- 3GPP-defined QPSK EV<br>- 3GPP-defined GQAM E'<br>RS EVM<br>RS Tx. Power (Avg)<br>OFDM Sym. Tx. Power                                                                                                                 | = 538.67 m%rm<br>= 1.8357 %<br>= 523.36 m%rm<br>M =<br>VM =<br>= 463.75 m%rm<br>= -34.977 dBn<br>=                                                                                             | Conformance                                         |
| Channel<br>P-SS<br>S-SS<br>PBCH<br>PCFICH<br>PHICH<br>PDCCH<br>RS<br>P-RS                                    | EVM(%ms)<br>0.50754<br>0.46512<br>0.48015<br>0.53953<br>0.53953<br>0.53965<br>0.46375<br>0.36799                         | -0.00278<br>-0.00338<br>-0.02434<br>0.01889<br>0.02182<br>-0.00431<br>0.00431<br>-0.00431                                   | Mod.Fmt.<br>Z-Chu<br>BPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK              | Ch1 Error Summary<br>EVM<br>EVM Pk<br>3GPP-defined QPSK EV<br>- 3GPP-defined 10QAM E'<br>RS EVM<br>RS Tx. Power (Avg)<br>OFDM Sym. Tx. Power<br>(Avg)                                                                                                                     | = 533.67 m%rm<br>= 1.8357 %<br>523.36 m%rm<br>M =<br>VM =<br>= 463.75 m%rm<br>= -34.977 dBn<br>=<br>= -34.977 dBn                                                                              | Conformance                                         |
| Channel<br>P-SS<br>S-SS<br>PBCH<br>PCFICH<br>PHICH<br>PHICCH<br>RS                                           | EVM(%ms)<br>0.50754<br>0.46512<br>0.48015<br>0.5953<br>0.53697<br>0.53065<br>0.46375<br>0.36799<br>0.56345<br>0.59655    | -0.00278<br>-0.00338<br>-0.02434<br>0.01889<br>0.02182<br>-0.00431<br>0.00171<br>-0.02164<br>-0.00048<br>-0.00249           | Mod.Fmt.<br>Z-Chu<br>BPSK<br>QPSK<br>QPSK<br>BPSK(CD <sup>-1</sup><br>QPSK<br>QPSK     | Ch1 Error Summary<br>EVM<br>EVM Fk<br>Data EVM<br>- 3GPP-defined QPSK EV<br>- 3GPP-defined GQAM E'<br>RS EVM<br>RS Tx. Power (Avg)<br>OFDM Sym. Tx. Power                                                                                                                 | = 538.67 m%rm<br>= 1.8357 %<br>= 523.36 m%rm<br>M =<br>VM =<br>= 463.75 m%rm<br>= -34.977 dBn<br>=                                                                                             | Conformance                                         |
| Channel<br>P-SS<br>S-SS<br>PBCH<br>PCFICH<br>PDCCH<br>RS<br>P-RS<br>MBSFN-RS<br>PMCH<br>PDSCH_OPSK           | EVM(%rms)<br>0.50754<br>0.46512<br>0.46015<br>0.55953<br>0.53957<br>0.53065<br>0.46375<br>0.36799<br>0.56345             | -0.00278<br>-0.00338<br>-0.02434<br>0.01889<br>0.02182<br>-0.00431<br>0.00171<br>-0.02164<br>-0.00048                       | Mod.Fmt.<br>Z-Chu<br>BPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>Q | Ch1 Error Summary<br>EVM<br>EVM Pk<br>Data EVM<br>- 3GPP-defined QPSK EV<br>- 3GPP-defined 16QAM E <sup>1</sup><br>- 3GPP-defined 64QAM E <sup>1</sup><br>RS EVM<br>RS Tx. Power (Avg)<br>OFDM Sym. Tx. Power<br>RS Rx. Power (Avg)<br>RSSI<br>RS Rx. Quality<br>Freq Err | = 538.67 m%rm<br>= 1.8357 %<br>= 523.36 m%rm<br>M =<br>VM =<br>= 463.75 m%rm<br>= -34.977 dBr<br>= -34.977 dBr<br>= -11.305 dBr<br>= -11.305 dBr<br>= -9.692 dE<br>= 57.533 Hz                 | Conformance<br>EVN                                  |
| P-SS<br>S-SS<br>PBCH<br>PCFICH<br>PHICH<br>PDCCH<br>RS<br>P-RS<br>MBSFN-RS                                   | EVM(%ms)<br>0.50754<br>0.46512<br>0.48015<br>0.5953<br>0.53697<br>0.53065<br>0.46375<br>0.36799<br>0.56345<br>0.59655    | -0.00278<br>-0.00338<br>-0.02434<br>0.01889<br>0.02182<br>-0.00431<br>0.00171<br>-0.02164<br>-0.00048<br>-0.00249           | Mod.Fmt.<br>Z-Chu<br>BPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>Q | Ch1 Error Summary<br>EVM<br>EVM Pk<br>3GPP-defined QPSK EV<br>3GPP-defined 16QAM E'<br>3GPP-defined 16QAM E'<br>RS EVM<br>RS Tx. Power (Avg)<br>OFDM Sym. Tx. Power<br>RS Tx. Power (Avg)<br>RS Rx. Quality<br>Freq Err<br>SyncCorr                                       | = 533.67 m%rm<br>= 1.8357 %<br>523.36 m%rm<br>M =<br>VM =<br>= 463.75 m%rm<br>= -34.977 dBr<br>=<br>= -34.977 dBr<br>= -11.305 dBr<br>= -11.305 dBr<br>= 9.692 dE                              | Conformance<br>EVN                                  |
| Channel<br>P-SS<br>S-SS<br>PBCH<br>PCFICH<br>PDCCH<br>RS<br>PDCCH<br>RS<br>PMCH<br>PDSCH_QPSK<br>PDSCH_QAM16 | EVM(%rms)<br>0.50754<br>0.46512<br>0.48015<br>0.53593<br>0.535837<br>0.53685<br>0.46375<br>0.56345<br>0.59655<br>0.50184 | -0.00278<br>-0.00338<br>-0.02434<br>0.01389<br>0.02182<br>-0.00431<br>0.00171<br>-0.02164<br>-0.00249<br>0.00249<br>0.00249 | Mod.Fmt.<br>Z-Chu<br>BPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>QPSK<br>Q | Ch1 Error Summary<br>EVM<br>EVM Pk<br>Data EVM<br>- 3GPP-defined QPSK EV<br>- 3GPP-defined 16QAM E <sup>1</sup><br>- 3GPP-defined 64QAM E <sup>1</sup><br>RS EVM<br>RS Tx. Power (Avg)<br>OFDM Sym. Tx. Power<br>RS Rx. Power (Avg)<br>RSSI<br>RS Rx. Quality<br>Freq Err | = 538.67 m%rm<br>= 1.8357 %<br>= 523.36 m%rm<br>M =<br>VM =<br>= 463.75 m%rm<br>= -34.977 dBr<br>= -34.977 dBr<br>= -11.305 dBr<br>= -9.692 dE<br>= 57.533 Hz<br>= 99.407 %<br>= 72.714 m%rm ≥ | IQ Waveform<br>Conformance<br>EVM<br>More<br>2 of 2 |

X-Series measurement applications for modular instruments

#### S-parameter measurements

The PXI VNA extends Keysight's expertise in measurement and metrology into the modular PXI form factor. It provides the same quality results you have come to expect in our benchtop VNAs. The graphical user interface guides test engineers using a similar look and feel as Keysight's popular PNA family of network analyzers.



S-parameter measurements using PXI VNA

# Software – Test Automation

This Reference Solution includes a C# test code example that optimizes speed without compromising performance and repeatability. To accelerate test development and facilitate the integration in your test environment, the source code of the test automation software is also provided.

## Instrument control

#### Power amplifier measurement libraries

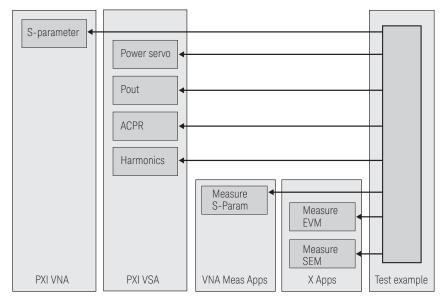
The power amplifier measurement libraries include the main functions to interface with the test instruments including PXI VSA, VSG, VNA & AWG, power sensor, SMU and the PA control through the MIPI RFFE interface. Hardware controls are provided to optimize test time and synchronization.

The primary function of the power amplifier measurement library is to use the IVI drivers for the PXI instruments and VNA measurement application; and the SCPI interface for the X-Series measurement applications to setup and make the required measurements for testing of power amplifiers (PA) and front end modules (FEM). This library includes PA test functions that leverage from the PXI VSA's high speed embedded measurement capabilities. For example, the same embedded FFT measurements can be used for both servo loops and ACPR, reducing test times.

Test functions include: Load waveforms, power servo loops, Pout, harmonics and ACPR measurements, modulation analysis and S-parameters.

#### Digital pre-distortion and envelope tracking

Examples are provided that use the programming API to the N7614B Signal Studio for PA Test application as a signal generation and analysis library while using the IVI drivers to control the PXI VSG, VSA and AWG. These examples include:


- Generating and loading IQ and envelope waveforms generated from N7614B into the PXI VSG and AWG
- Capturing IQ data from the PA output with the VSA and then using this IQ data to perform the digital pre-distortion model extraction with N7614B
- Performing AM/AM and AM/PM analysis from N7614B using the IQ data captured from the PA output, as well as ACPR,

efficiency and modulation analysis measurements with the pre-distorted waveforms applied to the PA input

## Test program examples

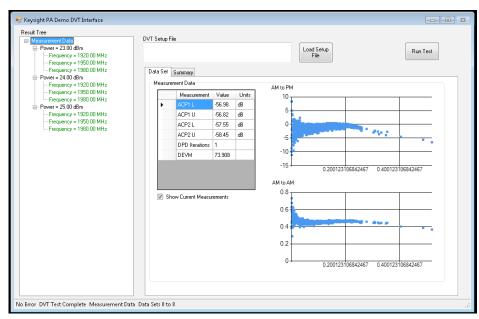
Included in this Reference Solution are test program examples for standards, including WCDMA, LTE (5, 10, and 20 MHz), GSM, 1xEV-DO, WLAN. These examples leverage from the PA measurement library as well as X-Series measurement applications.

Measurements include EVM, ACPR, SEM, power, harmonics, and S-parameters, as well as data logging and test times as shown in the figure x. It also includes dynamic EVM measurements for WLAN applications.



Measurement capabilities portfolio

#### Demonstration and evaluation GUI


To help you quickly and easily evaluate this Reference Solution, a demo program integrates all the features described in this brochure. Configure the GUI to test your own devices without writing software.

## Design validation test interface

The design validation test (DVT) interface allows any of the above measurements to be performed across a wide range of user configurable test conditions, with three levels of nested loops. The loops can be configured to cover RF frequency, RF power level and DC voltages, in any order. The measurement data collected in the DVT interface can be displayed for each test point or as a summary for any collection of the measurements.

| eysight PXI Power Amp Demo P                              | rogram (32-Bit)                                |                                  |
|-----------------------------------------------------------|------------------------------------------------|----------------------------------|
| strument Setup Test Conditions                            | Results                                        | Init                             |
| VSA/G DC/RFFE S Parameters                                | LTE DPD WLAN                                   | Local VSA                        |
| Servo Loop Settings                                       |                                                |                                  |
| Target Pout Expecte                                       | ed Gain Pout Tolerance Target Increment        |                                  |
| 25.00 🚔 dBm 25.00                                         | 🚔 dB 🛛 0.10 🚔 dB 🔍 0.00 🚔 dB                   |                                  |
|                                                           |                                                | DVT Interface                    |
| Test Frequencies                                          |                                                | Select Standards:                |
| Cellular Frequencies  1,920,000,000                       | WLAN Frequencies     ▲     2,400,000,000     ■ | LTE DPD                          |
|                                                           | 2,400,000,000 =                                | S Parameters                     |
| 1,950,000,000                                             | Load                                           | GSM                              |
| 1,980,000,000                                             | 2,440,000,000 - Defaults                       | WCDMA                            |
| Test Frequency Data File<br>C:\Users\Demo\Desktop\Phase 2 |                                                | CDMA2000<br>EVDO                 |
| \x86\Release\Band 1 Freq Data.c                           | Load Test<br>Sv<br>Frequency File              | TD-SCDMA To Select Measurements: |
| Input Loss Output Lo                                      | ss Bun VSA/G                                   | Power Servo Only                 |
| 2.00 🚔 dB 11.00 🚔                                         |                                                | ACPR =                           |
| Calibration Data File                                     |                                                | Harmonics                        |
|                                                           | Load Cal                                       | SEM                              |
|                                                           | Data File                                      | Run Selected                     |
| Servo/ACPR Mode                                           |                                                | Tests                            |
| Real Time FFT                                             | Align VSG on First DUT                         | 1 🚔 Repeat Count                 |
| Channel Power                                             | Align VSA on First DUT<br>External Trigger     | - Thepeak Counk                  |
|                                                           |                                                | Log Data                         |
|                                                           |                                                |                                  |
| Save State Recall State                                   | Reset To<br>Defaults Log Guide                 | Abort Test                       |
| rror Initialization Complete                              |                                                |                                  |
|                                                           |                                                |                                  |

Demonstration and evaluation GUI



Design validation interface

# Recommended reference solution configuration<sup>1</sup>

| Model                  | Description                                                                                                                                                        |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M9381A                 | PXIe Vector Signal Generator                                                                                                                                       |
| M9381A-F06             | 1 MHz – 6 GHz frequency range                                                                                                                                      |
| M9381A-B10             | 100 MHz modulation bandwidth                                                                                                                                       |
| M9381A-M01             | 32 MSa memory                                                                                                                                                      |
| M9381A-UNZ             | Fast switching                                                                                                                                                     |
| M9393A                 | PXIe Vector Signal Analyzer                                                                                                                                        |
| M9393A-F08             | 9 kHz – 8.4 GHz                                                                                                                                                    |
| M9393A-B10             | 100 MHz analysis bandwidth                                                                                                                                         |
| M9393A-M01             | 128 MSa memory                                                                                                                                                     |
| M9393A-UNZ             | Fast tuning                                                                                                                                                        |
| M9300A                 | PXIe Frequency Reference                                                                                                                                           |
| N6700                  | Modular Power System & SMU                                                                                                                                         |
| N6700B                 | Low-Profile Modular Power System Mainframe, 400 W, 4 slots                                                                                                         |
| N6782A                 | 2-Quadrant Source/Measure Unit for Functional Test                                                                                                                 |
| U2004A                 | USB Power Sensor                                                                                                                                                   |
| PXI Arbitrary Waveforr | n Generator                                                                                                                                                        |
| SD AOU-H3353           | Order from Signadyne<br>http://www.signadyne.com/en/products/hardware/high-speed/<br>analog-outawgssignal-generators/sd-aou-h3353analog-out<br>awgsignal-generator |
| PXIe Chassis and Cont  | rollers                                                                                                                                                            |
| M9018A                 | PXIe 18-slot chassis                                                                                                                                               |

| NIJUTUA                                       |                                                                                                   |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| M9037A                                        | PXIe embedded controller                                                                          |  |
| Application Software (more options available) |                                                                                                   |  |
| M9080B-1TP                                    | LTE-FDD X-Series measurement application for modular instruments, transportable perpetual license |  |
| N7624B                                        | Signal Studio for LTE/LTE-Advanced FDD                                                            |  |
| N7624B-9FP                                    | Connect to M9381A/M9252A fixed perpetual license                                                  |  |
| N7624B-HFP                                    | Basis LTE FDD Rel 9 fixed perpetual license                                                       |  |
| N7614B                                        | Signal Studio for Power Amplifier Test                                                            |  |
| N7614B-9FP                                    | Connect to M9381A fixed perpetual license                                                         |  |
| N7614B-EFP                                    | Envelope tracking                                                                                 |  |
| N7614B-FFP                                    | Digital pre-distortion                                                                            |  |
|                                               |                                                                                                   |  |

1. For a more complete set of configuration options, please refer to the *RF PA/FEM Characterization and Test, Reference Solution* configuration guide, literature number 5992-0072EN

#### myKeysight

**myKeysight** 

#### www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.



#### www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.



# Three-Year Warranty

#### www.keysight.com/find/ThreeYearWarranty

Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.



#### **Keysight Assurance Plans** www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.



#### www.keysight.com/go/quality

Keysight Technologies, Inc. DEKRA Certified ISO 9001:2008 Quality Management System

#### **Keysight Channel Partners**

#### www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/trueirimager

#### For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

#### Americas

| Canada        | (877) 894 4414   |
|---------------|------------------|
| Brazil        | 55 11 3351 7010  |
| Mexico        | 001 800 254 2440 |
| United States | (800) 829 4444   |
|               |                  |

#### Asia Pacific

Australia 1 800 629 485 China 800 810 0189 800 938 693 Hong Kong India 1 800 112 929 Japan 0120 (421) 345 080 769 0800 Korea Malaysia 1 800 888 848 1 800 375 8100 Singapore Taiwan 0800 047 866 Other AP Countries (65) 6375 8100

#### Europe & Middle East

| Austria        | 0800 001122   |
|----------------|---------------|
| Belgium        | 0800 58580    |
| Finland        | 0800 523252   |
| France         | 0805 980333   |
| Germany        | 0800 6270999  |
| Ireland        | 1800 832700   |
| Israel         | 1 809 343051  |
| Italy          | 800 599100    |
| Luxembourg     | +32 800 58580 |
| Netherlands    | 0800 0233200  |
| Russia         | 8800 5009286  |
| Spain          | 0800 000154   |
| Sweden         | 0200 882255   |
| Switzerland    | 0800 805353   |
|                | Opt. 1 (DE)   |
|                | Opt. 2 (FR)   |
|                | Opt. 3 (IT)   |
| United Kingdom | 0800 0260637  |

For other unlisted countries: www.keysight.com/find/contactus (BP-09-04-14)



This information is subject to change without notice. © Keysight Technologies, 2014 Published in USA, September 15, 2014 5992-0071EN www.keysight.com